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We explore the effect of random permanent cross-links on a system of directed polymers confined between
two planes with their end points free to slide on them. We treat the cross-links as quenched disorder and we use
a semimicroscopic replica field theory to study the structure and elasticity of this system. Upon increasing the
cross-link density, we get a continuous gelation transition signaled by the emergence of a finite in-plane
localization length. The distribution of localization length turns out to depend on the height along the preferred
direction of the directed polymers. The gelation transition also gives rise to a finite in-plane shear modulus
which we calculate and turns out to be universal, i.e., independent of the energy and length scales of the
polymers and the cross-links. Using a symmetry argument, we show that cross-links of negligible extent along
the preferred axis of the directed polymers do not cause any renormalization to the tilt modulus of the

uncross-linked system.

DOLI: 10.1103/PhysRevE.81.021802

I. INTRODUCTION

The statistical mechanics of directed polymers (DPs) has
been a very active field of research for more than twenty
years [1,2]. The directed paths under study may represent
configurations of “real” extended one-dimensional objects
such as polymers [3] and vortex lines in type-II supercon-
ductors [4], or may represent configurations in abstract
spaces such as those used to model sequence alignment in
bioinformatics [5].

Many physical systems consist of aligned extended one-
dimensional building blocks which can have crystalline or
fluidlike order in the transverse plane. Examples include co-
lumnar phases of DNA [6], discotic [7] or micellar [8] liquid
crystals, ferrofluids [9], and electrorheological fluids [10]. In
addition, polymer brushes consisting of dense flexible chains
terminally anchored on a surface are characterized by chain
elongation in the direction of the surface normal [11]. Al-
though the chains of polymer brushes can assume backtrack-
ing conformations, under strong stretching they can be
viewed as directed strings of Pincus blobs [12]. In recent
years, there has been interest in cross-linked polymer brushes
because of promising technological applications [13,14].

The effect of quenched disorder in the embedding me-
dium on arrays of interacting directed elastic lines has led to
the prediction of a whole zoo of glassy states in high-7.
superconductors [4]. In real polymer systems, irreversible
cross-links can be viewed as quenched disorder of a different
type and their effect can be studied using the tools of the
statistical mechanics of disordered systems [15]. A replica
field theory has been used to study the gelation transition due
to permanent random cross-links in systems comprised of
Gaussian chains [16], beads-and-springs [17], dimers-and-
springs [ 18], p-beine [19], and wormlike chains [20]. A simi-
lar field-theoretic approach to well-cross-linked macromo-
lecular networks has been developed by Panyukov and
Rabin. [21,22]
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In this paper, we employ the same theoretical framework
to study the effect of permanent cross-links on a melt of
flexible directed polymers in a particularly simple geometry.
The polymers are stretched between two parallel flat surfaces
with their ends free to slide on them. We predict a gelation
transition upon cross-linking associated with the emergence
of a finite localization length in the transverse plane which
depends on the distance from the boundary surfaces of the
slab.

Furthermore, we investigate mechanical properties of the
system. Due to the asymmetry of the system, one has to
distinguish between tilt modulus and shear modulus; the first
one describes the resistance to shear of the boundaries in the
preferred chain direction and the latter of the perpendicular
boundaries. Remarkably, the tilt modulus remains completely
unaffected upon cross-linking with cross-links of negligible
extent in the aligning direction.

The paper is organized as follows. We present our model
in Sec. II. In Sec. III, we define and calculate the tilt modulus
for the cross-linking geometry of our model. We construct a
replica field theory and obtain the gelation transition in Sec.
IV. The shear modulus is discussed in Sec. V. We summarize
in Sec. VL.

II. MODEL

We consider N directed polymers stretched between two
planes spaced a distance L apart. The end points of the poly-
mers are free to slide on the planes. Each polymer configu-
ration is described by a curve (path) r(z)=(x(z),y(z)), where
z€[0,L] and z is the direction of alignment (Fig. 1). By the
definition of directedness, these paths exclude loops and
overhangs. The areal density of the system in the xy plane is
N/A. We assume free boundary conditions at z=0 and z=L,
allowing the polymer ends to assume any arbitrary position
on the corresponding planes with any slope. In the absence
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FIG. 1. (Color online) A schematic diagram of directed poly-
mers in a slab of thickness L. z is the preferred direction and we
refer to x,y as the transverse or in-plane direction.

of cross-links, the effective free-energy functional (“Hamil-
tonian”) of the directed polymers consists of two terms,

Hafr ) =S . (d"(Z))
i=1
+E du%r(z) r;(2)), (1)

where the first term penalizes tilting away from the z direc-
tion with o being the effective line tension and the second
term is an excluded volume interaction.

A physical system where the effective free energy of Eq.
(I) can be realized is that of strongly stretched wormlike
chains of contour length L. If the two plates are held apart by
a pressure P and the areal density (on the xy plane) of the
polymers is high, each polymer will be stretched by a tension
F=PA/N. A strong tension allows only weakly tilting con-
figurations. In this case, the aligning part of the free energy

reads
i=1 2 ’

(2)

W) =3 2 .
i=1

where « is the bending stiffness of the wormlike chains re-
lated to their persistence length L, via k=L,kgT. For F
> (kT)*/k and L>L,, one can show [23] that the bending
term on the rhs of the previous equation can be neglected and
the projection of the polymer on the xy plane behaves as a
Gaussian chain.

In Ref. [12], a realization of a stretched brush is envi-
sioned as ABA triblock lamellae with selective cross-linking
of the A blocks. In an analogous realization of our model, the
A blocks would form fluid membranes.

Another physical realization of Eq. (1) is that of wormlike
chains interacting with a strong nematic field [2,3]. If the
chains are embedded in a nematic solvent with very large
Frank constants and the effective tension due to the polymer-
nematic interaction o is such that o> (kgT)?/ k, hairpins are
negligible. If, in addition, L>L,, the bending stiffness can
be neglected altogether and the chains behave as directed
flexible polymers.
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In the system described by Eq. (1), we introduce M per-
manent cross-links which restrict linked polymer segments to
remain within a distance of order a. Their effect is described
by an effective interaction,

HCw 1 <
T "2 TG - ) (3)

Cy+={i,»j.;7.} is a quenched configuration of M cross-links
identified by the polymers i,,j, involved and the cross-
linking height z,. For the sake of simplicity, we assume that
the cross-linking interaction is “local” in the z direction and
only depends on the in-plane distance of the polymer seg-
ments. As we shall show in Sec. III, this assumption has
profound consequences for the elasticity of the cross-linked
system.

The partition function of the system for a specific realiza-
tion of cross-links, C,;, reads as

H(C
Z(CM)=<eXp(— k( f))> )
B

where (...) denotes average over all polymer configurations
with Boltzmann weight exp(—=H,/kgT). Physical observables
of interest can be calculated from the quenched-disorder av-
eraged free energy, F=—kgT[In Z], where [ ...] denotes aver-
age over all realizations of random cross-links. We assume
that the number of cross-links can vary and a realization with
M cross-links follows the Deam-Edwards distribution [15],

WA
PCy) = M) <2N(2

The parameter u?>=2[M]/N controls the average number of
cross-links per polymer, and the physical meaning of this
distribution is that polymer segments close to each other in
the uncross-linked phase have a high probability of getting
linked.

M
)> Z(Cy)- (5)

III. TILT MODULUS

On large length scales, an array of directed polymers can
be described as an elastic continuum with three elastic
moduli: a shear, a bulk, and a tilt modulus. The first two
characterize deformations in the transverse plane whereas the
third characterizes the response to tilting away from the pre-
ferred axis. The elastic free energy of such a system was
proposed in the context of vortex-line arrays in type-II su-
perconductors by de Gennes and Matricon [24]:

1( d%q
Fy= f ) f —{(Kq? + Gg*)|u(q,q.)]?

+ qu,qvulu(q’ qZ)uV(_ q,— qz)}7 (6)

where K, G, and B are, respectively, the tilt, shear, and bulk
modulus. u, v are Cartesian indices in the xy plane. u(q,q.)
is the Fourier transform of the two-component displacement
field which parametrizes the elastic distortion of the vortex-
line array.

In order to measure the tilt modulus, we consider a small
force, f, applied at the upper end point of each polymer and
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the opposite force, —f, applied at the lower end point. The
induced deformation is measured by the average tilt field.
The tilt field is defined as

Y dr;
t(r,z) = >, d—’5(r -1,(2)). (7)
i=1 d<

The energy of the system subject to a cross-link configura-
tion Cy, and to a tilting force f reads as

L
He=Ho+ H(Cyy) - f dzf &r £-t(r,z2). (8)
0
To leading order in f, the average tilt field is
L[ [ e o ©
- r r, = b
al, 9=k

where (...); denotes thermal average with a Boltzmann
weight corresponding to the energy functional H;. The tilt
modulus, K, can be extracted from the partition function as a
static linear-response coefficient,

1 kyTA &
—0nw="5 o o InZy (10)
K N°L 5f,u,5fv f=0
where
Helri(2)}
Z= f D{ri(Z)}eXp(— . (11)
kgT

In the path integral of the previous equation, we apply a
“Galilean” transformation (where the height z is viewed as a
timelike parameter) [25],

, f
r,— I‘i =r;+—Z
o
7—7' =z (12)
which brings it to the form
NL
Zy=Zgg exp| - f2>, 13
t = Zt=0 XP( 2UeTor (13)

where Z;_ is the partition function without the external field
f. Equations (13) and (10) yield

N

K= 2 (14)
This result implies that the tilt modulus of a directed polymer
array with a specific realization of cross-links of the type
described by Eq. (3) is completely unaffected by the cross-
links and simply reduces to the single-polymer tension. Since
any realization of the quenched disorder associated with the
cross-links of this type would give the same result, we are
spared the burden of having to use replicas for the calcula-
tion of the average over disorder.

The reason behind the particularly simple result for the tilt
modulus is the “Galilean” invariance of the interactions be-
tween the polymers as well as of the boundary conditions. In
the specific model, both the excluded volume interaction and
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the cross-link interaction involve polymer segments at the
same height z and therefore remain unchanged under a “Gal-
ilean” transformation. Real cross-linking molecules have a
finite extent and may link to polymer segments at different
heights thus breaking the “Galilean” invariance. That would
lead to a nontrivial renormalization of the tilt modulus. In the
limiting case of cross-links with negligible extent, our model
is a good approximation, and we expect the tilt modulus to
remain unchanged and be given by Eq. (14).

IV. GELATION TRANSITION

The system of cross-linked directed polymers undergoes a
gelation transition as the number of cross-links per chain
increases. Whereas in the sol phase the DPs are free to move
in the xy plane like particles in a two-dimensional fluid, the
polymers’ motion in the gel phase is restricted to finite ex-
cursions around preferred positions. Thus there is a localiza-
tion transition in the xy plane, similar to the gelation transi-
tion in systems comprised of other building blocks in d=3
[16]. Since the latter has been discussed extensively, we keep
our discussion short.

What is the order parameter for the localization transition
in the xy plane? A point z on curve i, i.e., monomer z on
polymer i in a discretized model, is localized, if it has a
nontrivial expectation value

(8(x—r;(2))) # 1/V. (15)

If the particles are localized at random positions, as we ex-
pect for the gel phase, then the density averaged over all
particles vanishes at any nonzero wave vector. A possible
order parameter is the second moment of the local density:

N
0%(q9) = S [ O] (o
i=1

In general, one polymer is cross-linked with a finite number
of other polymers and in fact close to the transition this num-
ber is small. Hence there is no reason to expect that the local
density should obey Gaussian statistics, therefore we need all
moments of the local density to characterize the gel. This is
achieved in the replica formalism by introducing n copies,
one for each thermal expectation value. The order parameter
in the replica theory

N
x x,2) = 1 S [0~ 1)+ (0, = r )]
i=1

captures all moments of the local density and hence charac-
terizes the structure completely.

The average over the quenched realizations of cross-links,
Cuy, is done with help of the replica trick. The disorder aver-
aged free energy F=—kgT[In Z]=lim,_o(Z,,,— Z))/(nZ)) is
represented in terms of n noninteracting copies of the system
together with one additional replica to account for the distri-
bution P(C,,) of Eq. (5) which is proportional to the partition
function. The replicated partition function is represented as a
functional integral over collective fields (4,z),

Z.,= f DQe N1, (17a)
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2 rL
fn+1(9)=¢”§—Lf dz 2 1Q4,2)]PA@G)
0

geHRS
1 (* e
+—| dz X |§.2PN(G) -3,
2L 0 Ge1RS

(17b)

with the single-polymer partition function

n 2 (L
5= J Df(z)e-Hé"*”exp<¢L“ f dz S AG)Q(G,2)e i

0  §eHRS
i (F -
“f dz 2 x(ém(é,z)e”m)* (18)
L) Ge1RS
where
~ LN
NOES Sy ¢ uAQg). (19)

To simplify the notation we have introduced hatted vectors,
such as §:=(qq,qy,...q,) for (n+1)-fold replicated vectors.
We have also adopted units of energy such that kg7=1. The
harmonic potential for the cross-links is reflected in A(g)
=exp(-a®¢*/2) and ¢=2ma*/A. The collective field Q is
almost the order parameter, discussed above, except for the
zeroth replica which we have introduced to account for the
disorder average [...] in Eq. (17).

Areal density fluctuations are represented by (4,z) with
G=(0,...q,,...0), i.e., only one nonzero component (IRS).
These fluctuations are penalized by the excluded volume in-
teration. The stability of the liquid state in mean-field ap-
proximation (uniform density) is controlled by the coefficient
of the quadratic term in the fluctuations. A sufficiently strong

excluded volume interaction such that ):(qA) > 1 together with
the positive definiteness of the kernel (in z;,2,)
(e™10(Me)=7 )y = exp(=§2|z)~ 25|/ 20) preclude a collapse of
the liquid state. Since the areal density fluctuations are non-
critical, we only consider the order parameter in the so-called
higher replica sector (HRS) consisting of vectors ¢ with at
least two nonzero components.
The expectation value of the order-parameter field

(QUX,2))p= (3% - /() (20)

has to be calculated self-consistently with the weight of Eq.
(17). Here we restrict ourselves to the saddle-point approxi-
mation f,.;/6Q=0. As for the gel transition of random
coils, the saddle-point equation is solved exactly by the fol-
lowing ansatz for the order parameter:

o

q/*2§2
Q3.2 = (1- 0)8,5+ 080 f dfzp(f%aexp(— . )

0
(21)

Here Q denotes the fraction of DPs in the infinite cluster and
hence 1-Q is the fraction of DPs in the fluid state, giving
rise to the first (trivial) contribution to the order parameter.
On the other hand, the localized particles are characterized
by the localization length &, which fluctuates not only from
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polymer to polymer but also along one directed polymer giv-
ing rise to a distribution of localization length

1
— > (E-& 22
QN%Q (8(& - &) (22)
which depends on z. After averaging over the disorder the
system still has macroscopic translational invariance in the
xy plane. This requires that q;:=2"_q,=0.

The solution of the saddle-point equation reveals a gel
transition at a critical cross-link concentration u*=1, when a
macroscopic cluster of cross-linked DPs is formed. The gel
transition is signaled by a nonzero value of the gel fraction
Q. Close to the gel transition, e=u’~1<1 grows continu-
ously from zero: Q=2¢e+O(€%). To discuss the distribution of
localization length, we note that we have several length
scales in our system: the internal length of a directed poly-
mer, L, the length of a cross-link, a, and the radius of gyra-
tion in the xy plane, which is determined by /:= VL/(20). We
expect that the latter will set the scale for the localization
length, introduce the abbreviation 0=(2/3+a%/1>)I?/(&€)
and consider the distribution of rescaled, inverse localization
length, 7(6,s=z/L), with

w(6,s)d0="P(& Ls)d& . (23)

P(&.,2) =

This function is the solution of

(1+2€)m(06,s)

1
=(1+ G)J ds,m(0,s,)
0

1
€
+ mfo ds109(02W(0,s1)){2|s—s1| +a2/12}

1 0
+ef dsldszf d6,m(6,,5,)m(0— 6,,5,) + O(?).
0 0

(24)

To gain a better understanding of the solution, we decom-
pose the distribution into its mean with respect to s, 7(6)
=[dsm(0,s) and a deviation: (0,s)=(6)+5m(60,s). The
mean, 7(6), fulfills the same equation as for isotropic gels
[16]. The deviation is small close to the gel point,

5m(0,5) = ew(s)dy( 7 (0)) + O(€), (25)

2+ (1-5)2=2/3

, 26
a1 +2/3 (26)

w(s) =

and furthermore controlled by the ratio of cross-link length
to in-plane radius of gyration: a;:=a?/ . The larger the ra-
dius of gyration /, the more pronounced is the dependence on
s. We show the distribution for a typical value al2=0.1 in Fig.
2. As one would expect, localization is strongest in the
middle of the directed polymer and weaker at the boundaries.
The variation across the length of the DPs is stronger for
larger localization length (small 6).

To get a better understanding of this anisotropy, we show
in Fig. 3 cuts of Fig. 2 for two fixed 6 values. As one can see,
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FIG. 2. (Color online) Height-dependent part, 8m(6,s), of the
distribution of inverse localization length, 6, as a function of 6 and
s:=z/L. Due to the scaling behavior close to the sol-gel transition,
Sm(6,s) is normalized with e. a,2 is the ratio squared of the in-plane
extent of a cross-link to the in-plane radius of gyration of a free DP.

systen height s

0 0.5 1 1.5 2 2.5
[4

large localization lengths (such as 6=1/2, solid red curve)
are favored at the boundaries (s=0,1), and small localiza-
tion lengths (such as #=2, dashed blue curve) in the middle
of the sample (s= 1/2). This behavior is reasonable since the
ends of the chains are more loose. A chain segment close to
the top (bottom) boundary has a lower probability to have a
cross-link above (below) and hence is on average less local-
ized than a chain segment in the middle.

V. SHEAR MODULUS

In the gel phase, the DPs are localized in the xy plane.
Hence the symmetry with respect to translations in the x and
y directions is spontaneously broken as indicated by a non-
trivial expectation value of the local density as defined in Eq.
(15). The symmetry breaking occurs on a local level only,
while the macroscopic system (averaged over the cross-link
related disorder) remains homogeneous. We expect low-
energy Goldstone fluctuations and a finite stiffness to static
shear deformations in the xy plane (see Fig. 1). In the replica
formalism, the overall macroscopic translational invariance
is reflected in common translations of all n+1 replicas,

N
~

e
o

on(0,s)/e

(=]

|
e
o

0 02 04 06 08 1
N

FIG. 3. (Color online) Height-dependent part, ém(6,s), of the
distribution of inverse localization length, € vs the normalized sys-
tem height s=z/L, for #=1/2 (solid, red) and #=2 (dashed, blue).
The cross-link extent is a>=0 for both graphs. As in Fig. 2, ém(6,s)
is scaled with e.
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whereas replica-dependent translations generate a family of
order parameters which all give rise to the same free energy.

To investigate the response of the system to shear defor-
mations, we start from the replica free energy [Eq. (17b)] and
consider fluctuations around saddle point (21), which corre-
spond to long-wavelength shear deformations u®(r) in each
replica a=1, ... ,n except the zeroth replica [17,26,27]. The
latter represents the preparation state before the cross-linking
process, which takes place in a state without shear deforma-
tions. We furthermore want to consider pure shear only and
hence require that volume is conserved, V-u“=0, and no tilt
deformations are excited; i.e., u®(r) are chosen to be inde-
pendent of z.

The order parameter for the deformed state thus reads as

0,(q.2)=(1-0)

d*r ) .n o
+0 TeXp zq”~r+zZqL-u(r)
a=1

© oy
XJ d§27?(§2,z)exp<— qu ), (27)
0

where q(f) = q(“)—n]jq”. If the deformations are taken to be
spatially uniform we recover the general solution of the
saddle-point equation. Fluctuations around the saddle-point
value are incorporated by nonzero du and d,u. These are
assumed to be small, corresponding to long-wavelength ex-
citations.

We plug the ansatz (27) into the free energy (17b) and
only keep the lowest order in Q and in the derivatives d.u
and Jyu. Higher order derivatives, such as &i’yu, are ne-
glected. The result has the form of an elastic free energy of
an incompressible medium,

u®\?
P ) (28)
Tu

2 n
G
fn+l(Qu) =fsp+ JVJ er 2 2 (

wr=1 a=1

There f;, is the saddle-point value of the free energy and G is
the shear modulus,

(@ -1) Q)Q
G—(—j;———6 o (29)

With the distance from the sol-gel transition e=u’—1, the
relation Q=2e+O(€?) found in the previous section, and the
areal density ny:=N/A of the polymer chains, the shear
modulus simplifies to

2
G=§€%@T (30)

The scaling of the shear modulus G € close to the sol-gel
transition is in agreement with previous results for isotropic
systems [17,26,27]. This result for the shear modulus is uni-
versal and does not depend on the microscopic length or
energy scales which characterize the polymers and the cross-
links.
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VI. CONCLUSIONS AND OUTLOOK

We have addressed the effect of random permanent cross-
links on an array of directed polymers confined between two
planes with their end points free to slide on them. The cross-
links are assumed to have negligible extent in the preferred
direction of the DPs (local in the z direction), but they are
springlike in the transverse (xy) plane. The constraints im-
posed by the cross-links are treated as quenched disorder
which follows the Deam-Edwards distribution.

At a certain critical cross-link density, there is a continu-
ous gelation transition from a sol phase where the DPs are
free to wander in the x and y directions to a gel characterized
by the emergence of finite localization lengths for the poly-
mer segments which belong to the infinite percolating clus-
ter. Unlike other isotropic polymer systems which undergo a
similar transition, the DPs are inherently anisotropic and this
is reflected in the height (z) dependence of the order param-
eter and the associated distribution of localization length.
Because of the finite extent of the system in the preferred
direction, larger localization lengths are favored closer to the
boundaries where the polymer end points are free to slide.

The gelation transition is accompanied by the emergence
of a finite shear modulus. Our result for the array of cross-
linked DPs close to the gel point agrees with previous results
for isotropic systems thus suggesting universality. As far as
in-plane localization and the relevant shear modulus are con-
cerned, our system can be viewed as effectively two dimen-
sional. It is well known that truly long-ranged positional or-
der cannot exist in two dimensions [2]. In [27], it was shown
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for isotropic systems that fluctuations drive the order param-
eter to zero as expected from the Mermin-Wagner theorem.
Yet a quasiamorphous solid state survives. It is characterized
by a finite stiffness to static shear deformations and algebra-
ically decaying correlations.

The asymmetry of our system due to the preferred direc-
tion of the DPs entails the existence of a tilt modulus which
is different and independent from the shear modulus. We
have only considered the simplest case of cross-links with
negligible extent in the preferred direction of the DPs. Using
a “Galilean” invariance argument, we have shown that cross-
links of this type leave the tilt modulus of the uncross-linked
system completely unaffected. We expect cross-links which
connect polymer segments at different heights to induce an
effective “nonlocal in z” interaction between the connected
polymers. By analogy to a similar interaction in the case of
flux lines in type-II superconductors [28], we can expect the
breaking of the “Galilean” invariance to cause an upward
renormalization (stiffening) of the tilt modulus. This putative
renormalization may be useful to quantify the cross-link in-
duced collapse of polymer brushes. We hope to report on
these issues in a future publication.
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